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In order to investigate the stereodynamics of the Li+ HF f LiF + H reaction, the exact quantum mechanical
scattering matrix calculated in the|jl 〉 (orbital) representation in the total energy range from 0.45 to 0.54 eV
is converted into the stereodirected representation (J. Phys. Chem.1991, 95, 8184) by an orthogonal
transformation. Using total angular momentumJ ) 0 results, the dependence of the reaction probability
matrix on the relative orientation of both the reactant and product molecules as well as on the direction of
attack and recoil velocity is illustrated and discussed. Formulas are given, relating the exact quantum
mechanical stereodynamic properties obtained from both the|jΩ〉 (helicity) and |νΩ〉 (stereodirected)
representations of the scattering matrix to the information derived from classical trajectory studies and from
experimentally observable polarization parameters.

I. Introduction

The class of reactions between metal atoms and halogen-
containing molecules has received wide attention, both from
experimentalists and from theoreticians. In particular, the
simplest example

is an ideal prototype for investigating the properties of asym-
metric A + BC reactive systems. A hyperspherical view of
the potential energy surface for this reaction, as used in
calculations discussed in this paper, is shown in Figure 1.1 Scalar
properties of reaction 1, such as state-to-state probabilities,
integral cross sections, and rate constants, have been successfully
investigated both experimentally (using crossed molecular
beam2,3 techniques) and theoretically (using statistical,4 quasi-
classical,5-11 approximate quantum,12,13 and more recently,
accurate quantum 3D time-dependent14 and time-independent15,16

techniques). Such an enormous amount of dynamical work
made use of potential energy surfaces16-19 fitted to the ab initio
potential energy values computed by Chen and Schaefer20 and
others.19 An alternative surface has been proposed and used to
compute reactive scattering properties.21

More recently, experiments (thanks to the use of molecular
beam techniques without and with polarized lasers and electric
and magnetic fields22) have evolved in a way that studies of
reaction stereodynamics (RSD) have become feasible. RSD
focuses on vector properties (such as angular momentum vector
correlations and a quantitative research of thesteric effect)of
the reactive process as opposed to scalar quantities (such as the
selective partition of the reactant energy among product
channels).

Classical trajectory studies of reaction 1 have already tackled
in the past the problem of understanding RSD effects.23 Our
present goal is to calculate exact 3D values of stereodynamic

properties of the Li+ HF reaction starting from the recently
reported accurate quantum results,15,16,24which, being based on
a time-independent hyperspherical coordinate method, give the
full S matrix for the process (differently from time-dependent
approaches).

Seminal papers on both experimental and theoretical aspects
on the general topic of vector correlations and reaction dynamics
stem from Herschbach’s group in the 70’s (starting with refs
25 and 26). The whole topic of stereodynamics in bimolecular
reactions has been the object of many recent reviews; see, for
example, ref 27. For recent progress, see ref 28.

The scheme of this paper is as follows. In section II
alternativeS matrix representations and orthogonal transforma-
tions among them are described. In section III stereodynamical
information that can be derived from stereodirected representa-
tions is discussed. In section IV the steric effect calculated for
the Li + HF reaction is presented and analyzed. The appendix
section briefly summarizes the stereodynamical information
contained in the helicity representation according to the
viewpoint presented in this paper.

II. Alternative S Matrix Representations

In principle, accurate quantum mechanical calculations
provide a comprehensive picture of the molecular dynamics and
a rigorous description of reactive and nonreactive events. The
scattering matrixS incorporates, in fact, all the differences
between the wave function of a system experiencing the atom-
molecule interaction during the collision and the unperturbed
one. Asymptotically, when the atom-molecule potential is
negligible, j (the diatomic rotational) andl (the atom-diatom
orbital) angular momentum quantum numbers of the space-fixed
(SF) representation are conserved (they are in this limit good
quantum numbers). Together with the total angular momentum
quantum numberJ (J ) j + l) and its projectionM, they can
be used to label the quantum states of the system and, as a
consequence, theSmatrix of the process. In the exact quantum
mechanical approach, numerical procedures are used to compute
anS matrix in the|JMjl〉 representation. In the following, the
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Li( 2S) + HF(1Σ+) f LiF(1Σ+) + H(2S) (1)
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shorter notation|jl 〉 will be used. Elastic, inelastic, and reactive
probabilities are then obtained by proper sums over theSmatrix
elements.

Although all the information (including the stereodynamical
one) is fully contained in the|jl 〉 representation of theSmatrix,
other representations of the scattering matrix are more suitable
for carrying out RSD studies. In this perspective, body-fixed
(BF) representations are particularly useful. These representa-
tions take a particular vector of the considered arrangement as
the quantization axis. We will use unprimed and primed
symbols for denoting quantities referring respectively to the
reactant or to the product arrangement. If the chosen vector is
Rτ (the atom-diatom Jacobi vector pointing from the diatom
center of mass onto the atom in the reactant arrangement), the
quantum number of the common projection ofJ andj τ, on Rτ,
is Ω (the projection oflτ is necessarily zero). When choosing
r τ as a quantization vector (the diatom Jacobi vector pointing
from the first to the second atom of the diatom in the reactant
arrangement), the quantum number of the commonJ and lτ,
projection isΛ (while now the projection ofj τ is zero). The
corresponding|JMjΩ〉 (shortly |jΩ〉) and|JMlΛ〉 (shortly |lΛ〉)
bases can be used to represent theS matrix. These representa-
tions are related among themselves and the|jl〉 one by orthogonal
transformations.29,30

An alternative exact label for the basis is thesteric quantum
numberν, the projection of an artificial vectorA precessing
aroundRτ.31 In this case, when the modulus of this vector
increases, the grid of discrete values of the precession angle
more finely scans the angleΘτ

R (the angle formed by the
vectorsRτ andr τ). This representation|JMνΩ〉 (shortly |νΩ〉)
(and its analogue|JMνΛ〉 (shortly |νΛ〉), when the precession
occurs aroundr τ) is obtained by orthogonal transformations from
the other.

Orthogonal transformations of theS matrix have been
discussed in detail in ref 30. Among those given there, we
consider explicitly the SF to BF helicity (|jl 〉 f |jΩ〉) and the
BF helicity f BF stereodirected|jΩ〉 f |νΩ〉 transformations
that are needed in the following. The|jl 〉 f |jΩ〉 orthogonal
transformation is

where the elements of the transformation matrix are

in terms of Wigner 3j symbols.29 The orthonormal properties
of the transformation ensure preservation of symmetry and
unitarity to theS matrix in this representation. For the caseJ
) 0, considered in this paper, the space-fixed and helicity
representations coincide. For completeness, the stereodynamical
information contained in the helicity representation is discussed
in the appendix section.

The |jΩ〉 f |νΩ〉 orthogonal transformation is

where

and again, theS matrix in this stereodirected representation
continues to be symmetric and unitary. For further discussion
and use of these transformations see some related papers.32

III. Stereodynamical Information from Stereodirected
Representation

To extract stereodynamical information from relationships
given above, one needs to calculate theSJ matrix for all the
partial waves contributing to reaction. SinceJ may become
very large before partial wave convergence is reached and
computations become increasingly heavier withJ in terms of
memory and CPU time, it is likely that these data will be
produced in the near future only for a limited number of systems.
For this reason, this investigation is focused on those individual
fixed J representations that can supply information about RSD
properties.

As already mentioned, it is straightforward to transform
helicity representations of theSmatrix into stereodirected ones.
As a matter of fact, the projection quantum numberν of the
stereodirected|νΩ〉 representation of theS matrix has to be
interpreted30,33 as a quantum label

Figure 1. Hyperspherical perspective for the potential energy surface of the Li+ HF reaction as adapted from ref 1. This is a view of the collinear
configuration.
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that can be used to discretizeΘR

(an analogous relationship can be established betweenν′ and
the exit channel angleΘR′).

In the caseJ ) 0, one has

that conveniently defines a zero total angular momentumsteric
effect.33 It is worth pointing out here that in eq 8 the (V f V′)
indexes have been omitted to simplify the notation (e.g.,
Pττ′

J)0(ν) meansPττ′
J)0(ν;VfV′)) while the j and j′ labels dis-

appear in the stereodirected representation. In the same
equation, the probability matrix is given by

In the caseJ ) 0, it is alsoΩ ) Ω′ ) 0 so that there is no need
for summing overΩ andΩ′. However, when consideringJ *
0, bothΩ andΩ′ can differ from zero, and since the range of
ν values depends onΩ (see eq 6) (and the range ofν′ values
depends onΩ′), other types of summations are of interest. In
particular, the differentP ττ′

J (ν) values depend parametrically
on Ω (and theP ττ′

J (ν′) values depend parametrically onΩ′).
Therefore, one has to use

whereP ττ′
J (Ω,νfΩ′,ν′) is the probability matrix. The prob-

ability P ττ′
J (ν;Ω) would give a fixedJ and fixed Ω steric

effect,i.e., the effect of tilting the rotation plane with respect to
Rτ or kτ at fixed J and fixed angle value.

IV. Steric Effects for Li + HF Reaction

To examine quantum mechanically the steric effects for the
Li + HF reaction, we calculated from eq 9 the detailed reactive

Figure 2. Reaction probabilities at two collision energies obtained from the scattering matrix as transformed to the stereodirected representation.
Steric quantum numbersν andν′ are for entrance (Li+ HF) and exit (LiF+ H) channels, respectively. Entrance channel vibrational state isV )
0. The three cases for exit channel vibrational statesV′ ) 0, 1, and 2 are shown.
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Figure 3. Probabilities for the reaction Li+ HF(V ) 0) f LiF(V′ ) 0) + H as a function of the angle of attackΘk or recoilΘk′ for collision energy
values ranging from 0.45 eV (bottom panel) to 0.54 eV (top panel).

Figure 4. As in Figure 3, for Li+ HF(V ) 0) f LiF(V′ ) 1) + H.
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probability matrix whose elements arePττ′
J)0(νfν′) as well as

the quantitiesPττ′
J)0(ν) andPττ′

J)0(ν′) obtained summing overν′
andν, respectively. For these calculations the zero total angular
momentumS matrix elements computed using the hyperspheri-
cal formalism34,35for an interval of total energy values covering
the range from 0.45 to 0.54 eV in steps of 0.01 eV were used.
In this energy interval the reactantV ) 0 and productV′ ) 0,
1, 2 vibrational states are open.

To carry out the RSD analysis, the|jl 〉 representation ofS
was transformed into the helicity and stereodirected ones. Then
the square modulus of individual elements were summed either
over ν′ or overν to obtainPττ′

J)0(ν) andPττ′
J)0(ν′), i.e., cumula-

tive (though still state-specific)steric effects.
Results for the probability matricesPττ′

J)0(νfν′) at two
collision energies and for the transition fromV ) 0 to V′ ) 2
are given in Figure 2 by plotting related contour maps. The
figure shows that, in general, theS matrix is rather “sparse”.
Important probabilities accumulate only at the positiveν′ edge.
This indicates a large polarization effect for products, with the
H atom separating preferentially within a narrow cone on the F
side of the LiF molecule. The structure of the reactive
probability, when this is plotted as a function of the reactant
collision angle, is bimodal, whereas when the reactive prob-
ability is plotted as a function of the product collision angle,
there is only one peak (corresponding to exits on the F side)
that indicates a clear dynamical bias of this system. The
bimodal structure has a peak at positive values ofν and a peak
at negative values ofν.

In Figures 3-5 we show angle-dependent probabilities
Pττ′

J)0(ν) at V ) 0 and V′ ) 0, 1, 2, respectively, at all the
energies considered. Plots ofPττ′

J)0(ν) have been discussed in

the literature for the first time in ref 33. They are given in
terms of the angle of attackΘk, obtained fromν through eq 7.
All the plots show in general a prominent peak at smallΘk

values, confirming that the F side is the most favorite side for
reactive attacks. They also show a second peak at largeΘk

values, indicating that a substantial fraction of reactive attacks
take place from the H side. Such a structure becomes less
pronounced whenV′ increases.

The corresponding plots for the product arrangement are given
on the right-hand sides of Figures 3-5 wherePττ′

J)0(ν′) calcu-
lated at the different energies for the differentV′ values are given.
Again, irrespective of the amount of energy allocated as
translation of the reactants, reactive events show a bias toward
positive values ofν′ meaning that the product atom is
preferentially expelled by the F side. The globally nonmono-
tonic appearance of these plots is clear evidence of the highly
quantum nature of this system.

V. Conclusions

Different representations of the quantumSmatrix can be used
to derive information about the stereodynamics of an atom-
diatom reaction. To this end, links betweenS matrix elements
given in the helicity representation and both reactant and product
polarizations can be established, as shown in the appendix
section. Via a proper classical correspondence rule, multipole
moments describing the polarization of a given angular mo-
mentum with respect to the direction of the cylindrical symmetry
axis can be also linked to the value of theS matrix elements.
In principle, all these quantities can be obtained from both
physical and numerical (trajectory) experiments, allowing a
crossed experimental-theoretical comparison. The complete

Figure 5. As in Figure 3, for Li+ HF(V ) 0) f LiF(V′ ) 2) + H.
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evaluation of all these quantities for the Li+ HF reaction needs
an extension of quantum calculations to large total angular
momentum values; this is a very demanding computational task,
presently being pursued.

The investigation has been extended here to exploit the
advantage of using a stereodirected representation of theS
matrix. This gave us the possibility of obtaining information
on stereodynamical effects already from data calculated at zero
total angular momentum. In particular, information was ob-
tained on the preferred side of attack or the likely side of
expulsion of the incoming or outgoing atom. This also allowed
an analysis of the effect on the angular dependence of the
reactivity of different allocations of energy among vibrational
levels of both entrance and exit channels.
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Appendix A: Stereodynamical Information from Helicity
Representation

Although the focus in the main text was on the stereodirected
representation, which deals with the role of angles of attack
and recoil, in the helicity representation theS matrix elements
are explicitly labeled by the rotational quantum numbersj and
j′. This representation is suited to the discussion of experi-
mentally observable polarization effects, although this requires
information, presently unavailable, also forJ > 0. Vector
correlations rich in information about the stereodynamics of
atom-diatom chemical reactions are those concerning the
entrance and exit relative velocity vectorsk and k′ and the
rotational angular momentaj andj ′ for the reactant and product
diatom arrangement, which will be denoted byτ and τ′,
respectively. Classically, the distributions of the polarization
for reactant,Pττ′(k̂‚ĵ ), and for product,Pττ′(k̂′‚ĵ ′), are defined.
These distributions can be easily obtained from trajectory
calculations (see, for example, ref 36) and from experiments.3

As far as quantum results are concerned, the|jΩ〉 representation
of the S matrix contains information related to these distribu-
tions. As already mentioned, in the helicity representation the
discrete values ofΩ quantize29,30the projection ofJ andj onto
Rτ. Since in this frame the relative velocityk coincides with
Rτ (apart from a phaseπ), the |jΩ〉 representation contains
information about the (k̂‚ĵ ) vector correlation.

In order to compare classical and quantum results, we forge
a link between the scattering matrix and the polarization
distributions. The reaction probability from a reactant state
labeledV, j, andΩ to a product state labeledV′, j′ andΩ′, at a
given total angular momentumJ, is simply the squared modulus
of the correspondingS matrix element:

To keep the notation as simple as possible, in the following we
do not specify vibrational and rotational state labels. Accord-
ingly, the probability defined in the above equation will be

denoted byPττ′
J (ΩfΩ′). At this point a comparison with

standardJ-averaged trajectory results is possible by performing
first a sum over allΩ′

and then a weighted sum overJ

where the total angular momentum varies betweenΩ andJmax,
the largest contributing value to the partial wave convergence.
Since Ω assumes all possible integer values from 0 to
min(j, J), whenJ g j, all the orientations ofj are allowed and
when J < j, the projectionΩ is bound byJ and only some
orientations ofj are allowed. By summing up all the relevant
contributions, one can recover the overall probability at fixed
Ω value.

An explicit formulation of the (k̂‚ĵ ) correlation is worked out
by invoking the semiclassical vector model of the angular
momentum37

where 0 e Ω e min(J,j); see section II. This equation is
obviously in agreement with the fact that in a three-particle
system the diatom has no rotational polarization and angular
distributions of j and j ′ rotational angular momenta are
necessarily aligned with respect to the relative entrancek and
exit k′ velocities. Semiclassical analyses38 and trajectory
calculations36,39 show this clearly, since they lead to nonneg-
ligible values only for the even Legendre moments of the
corresponding angular distributions. This alignment is a
consequence of the conservation of parity under the inversion
of all coordinates and pictorially can be envisaged as a
manifestation of the irrelevance for reactivity of the molecular
sense of rotation with respect to the approach or recoil direction.
However, it has to be emphasized here thatj or j ′ may well
show an orientation with respect to thek-k′ plane.38

The comparison between the classical polarization of the
reactant Pττ′(k̂‚ĵ ) and the quantum transition probability
Pττ′(Ω) is obtained through eq A4. As a result, from the
complete set ofS matrices at allJ values one can obtain the
quantum mechanicalPττ′(Ω) distribution with a large (though
discrete) collection of grid points. To the end result of
comparing quasiclassical and quantum distributions, one can
also bin the results and obtain histogrammic representations.

By exchanging in the given expressionsj andΩ with j′ and
Ω′, respectively, and going through similar considerations, we
get the quantum mechanical counterpart,Pττ′(Ω), for the product
polarization distributionPττ′(k̂‚ĵ ).

In the following we show that eq A4 is also useful for
comparing quantum results with the polarization parameters27,37

A0
(k) obtainable from the experiment. To establish a link

betweenPττ′(Ω) and the polarization parameters, we exploit the
relationship betweenPττ′(k̂‚ĵ ) and Pττ′(Ω) as well as the
relationship betweenPττ′(Ω) and the different fixedJ contribu-
tions; see eq A3.

By enforcement of the cylindrical symmetry, explicit expres-
sions in terms of theS matrix can also be derived for theA0

(k)

(J) multipole moments describing the polarization of the
considered angular momentum with respect to the quantization

Pττ′
J (VjΩfV′j′Ω′) ) |SτVjΩ,τ′V′j′Ω′

J |2 (A1)

Pττ′
J (Ω) ) ∑

Ω′
Pττ′

J (ΩfΩ′) (A2)

Pττ′(Ω) ) (Jmax + 1)-2 ∑
J)Ω

Jmax

(2J + 1)Pττ′
J (Ω) (A3)

|k̂‚ĵ | S
Ω

j + 1/2
(A4)
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axis and for their mean valuesA0
(k). Under the cylindrical

symmetry constraint, the spherical-tensor angular momentum
operators, which naturally appear in the stereodynamics of
angular momenta, are functions of the more usual operators for
the total angular momentum and its projection.27,37 Following
ref 37 (see p 234), we have worked out an expression for the
main alignment parameterA0

(2)

in terms of the reaction probabilitiesPττ′
J (Ω) (see eq A2) at

fixed J andΩ. This is the first non-null polarization parameter
and can be compared with the experimental results and standard
classical calculations.

From the above equation we can also derive an expression
for the alignment parameter at fixed total angular momentum

The above expressions can also be used to calculate the
polarization parameter for the product arrangement using proper
quantities. Higher multipole moments can be evaluated using
a similar procedure. For a recent alternative to these quantities,
closer to the spirit of the present paper, see ref 40, section IVB.
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min(j,J)

∑
J)Ω

Jmax

(2J + 1)

Ω2

(j + 1/2)2
Pττ′

J (Ω) (A5)
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Ω

Ω2
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